CS-200 Computer Architecture

Part 3b. Memory Hierarchy Simple Cache Examples

Paolo lenne <paolo.ienne@epfl.ch>

1. Compulsory Misses of a Direct Mapped \$

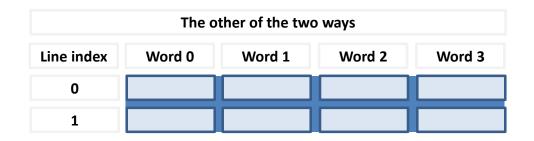
 Given an initially empty direct-mapped cache with 4 lines and 2 words per line, find the total number of compulsory misses for the following memory access sequence (in decimal):

- The memory is word-addressable
- The least recently used (LRU) replacement policy is used

- Given that we have a direct-mapped cache, replacement policy is inapplicable
- Direct-mapped cache with 4 lines and 2 words per line

Line index	Word 0	Word 1
0		
1		
2		
3		

- Compulsory misses are all those misses that could not have been avoided; hence, the
 # of compulsory misses equals the # of unique cache blocks accessed
 - There are 6 unique cache blocks accessed: (12,13), (14, 15), (10, 11), (0, 1), (16, 17), (2, 3)
 - Hence, there are 6 compulsory misses


2. Hits in a 2-Way Set-Associative \$

Given an initially empty 2-way set-associative cache with 2 sets and 4 words per block, find the total number of hits for the following memory access sequence (in decimal):

- The memory is word-addressable
- The least recently used (LRU) replacement policy is used

- Given that we have a set-associative cache, replacement policy is relevant
- 2-way set-associative cache with 2 sets and 4 words per block

One of the two ways						
Line index	x Word 0 Word 1 Word 2 Word 3					
0						
1						

- Bits 0 and 1 of the address (i.e., the last two bits) select the word in the line (0, 1, 2, or 3)
- Bit 2 of the address corresponds to the line/set index (0 or 1)

		Left Way		
Line index	Word 0	Word 1	Word 2	Word 3
0				
1				

Right Way						
Line index	Word 0	Word 1	Word 2	Word 3		
0						
1						

Address sequence	Set index	Way	Words	Hit? Miss?	Anything evicted to make space for this?
11 = (0 1 <mark>0</mark> 11) ₂	0	L	8, 9, 10, 11	Miss	No.
15 = (0 1 <mark>1</mark> 11) ₂	1	L	12, 13, 14, 15	Miss	No
4 = (0 0 <mark>1</mark> 00) ₂	1	R	4, 5, 6, 7	Miss	No
16 = (1 0 <mark>0</mark> 00) ₂	0	R	16, 17, 18, 19	Miss	No
3 = (0 0 <mark>0</mark> 11) ₂	0	L	0, 1, 2, 3	Miss	(8, 9, 10, 11) @ L
10 = (0 1 <mark>0</mark> 10) ₂	0	R	8, 9, 10, 11	Miss	(16, 17, 18, 19) @ R
12 = (0 1 <mark>1</mark> 00) ₂	1	L	12, 13, 14, 15	Hit	-
24 = (1 1 <mark>0</mark> 00) ₂	0	L	24, 25, 26, 27	Miss	(0, 1, 2, 3) @ L
19 = (1 0 <mark>0</mark> 11) ₂	0	R	16, 17, 18, 19	Miss	(8, 9, 10, 11) @ R
25 = (1 1 <mark>0</mark> 01) ₂	0	L	24, 25, 26, 27	Hit	-

Answer: 2

3. Miss Rate in a 2-Way Set-Associative \$

• Given an initially empty 2-way set-associative cache with 2 sets, find the miss rate for the following block address access sequence (in decimal):

- The memory is word-addressable
- The least recently used (LRU) replacement policy is used

Block address

Bits to select a word in a line

• The least significant bit of the block address is the set

Block Address sequence	Set index	Way	Hit? Miss?	Anything evicted to ma	ake space for this?
6	0	L	Miss	No	
0	0	R	Miss	No	
0	0	R	Hit	-	Miss Rate
5	1	L	Miss	No	= #misses / #accesses =
5	1	L	Hit	-	60%
6	0	L	Hit	-	
1	1	R	Miss	No	
2	0	R	Miss	Yes, 0 @ R (least recen	tly accessed)
2	0	R	Hit	-	
0	0	L	Miss	Yes, 6 @ L (least recent	tly accessed)

4. Direct-Mapped \$

- Consider a direct-mapped cache with a capacity of 128 KiB and 2 words per line
- The memory is word-addressable (one word = 4 bytes)
- The memory address has 32 bits
- Show how the address bits are used in the cache

- No bits are used to select the byte (word-addressed)
- Bit 0 used to select the word (2 words/line)
- Bits 1-14 used for the index
 - Total storage: $128 \text{ KiB} = 2^{17} \text{ B}$
 - Each line = $2 \text{ words} \times 4 \text{ B/word} = 2^3 \text{ B}$
 - Number of lines = $2^{17} / 2^3 = 2^{14}$
 - Bits for the index = 14
- Bits 15-31 are the tag

5. Tag of a 2-Way Set-Associative \$

- Consider a 2-way set-associative cache with a capacity of 128
 KiB and 8 words per line
- The memory is byte-addressable (one word = 4 bytes)
- The memory address has 32 bits
- Find the tag for memory address 0xa8f4bfc6

- Bits 0-1 used to select the byte (byte-addressed)
- Bits 2-4 used to select the word (8 words/line)
- Bits 5-15 used for the index
 - Total storage: $128 \text{ KiB} = 2^{17} \text{ B}$
 - Each line = 8 words \times 4 B/word = 2^5 B
 - Number of total lines = $2^{17} / 2^5 = 2^{12}$
 - Number of lines per way = $2^{12} / 2 = 2^{11}$
 - Bits for the index = 11
- Bits 16-31 are the tag: $0xa8f4bfc6 \rightarrow 0xa8f4$